
[image: image1.png]

Programming Manual

UHF Series Reader

[image: image5.jpg]

Version: V2.0.0

Dear Customers:

Thanks for your trust and support! We will be happy to provide you with comprehensive service and technical support.

This manual will instruct you how to call API function package in CD-ROM when you using the UHF series reader and enable your software integration communicating with the reader, configuring reader parameters, controlling the reader to operate on tag and acquire tag returned operation information.

If you experience problems during operation, please contact our technical support department.

Your comments & suggestions are warmly welcome during your operation on our products. We will be always at your side.

This manual is suitable for the following readers:

UHF Series Reader

When this manual is written it is supposed that readers have basic knowledge over RFID and computer. The technical words, such as RFID, Radio Frequency & Ethernet etc. in this manual, are not specifically introduced. Please refer to other reference books or consult our technical department for support.

The following marks would appear in our manual, the meaning are as below:

[image: image6.png]

 Warning
If it disobey the restricted operations or using environments, it might be harm to human health or damage equipments.

[image: image2.jpg]

 Advice
Follow the advised instructions, the results might be better.

Table of Contents

1Part I
Overview

11.
API Function Package Introduction

12.
API Function Description

2Part II
Call of API

21.
Environment Requirements

22.
File Included

23.
API Call Methods

3Part III
Special Explanation

31.
About Tag

31.1 EPC Tag

31.2 ISO8000-6B Tag

42.
About Reader

42.1 Antenna Port

42.2 Multi Reader

6Part IV
API Function List

61.
Communication Control Function

62.
System Parameter Configuration Function

73.
Reader Operation Function

74.
Tag Operation Function

85.
API Configuration Function

9Part V
API Function Description

91.
Communication Control Function

91.1 TCP Parameter Initialization

91.2 COM Port Parameter Initialization

91.3 USB Parameter Initialization

101.4 UDP Parameter Initialization

101.5 Establish Connection

101.6 Close the Connection

101.7 Re-connect reader

101.8 Check the connection

112.
Configuration of System Information

112.1 System Information Setting

112.2 Query of System Information

112.3 Configuration of Working Mode

122.4 Operation on System Parameter List

122.5 Configuration of Carrier

122.6 Query Carrier Parameter

132.7 Configuration of Communication Parameter

132.8 Query Communication Parameter

132.9 Configuration of Network Parameter

142.10 Query Network Parameter

142.11 Configuration of Tag Operation Parameter

142.12 Query Tag Operation Parameter

152.13 Configuration of Expansion Board Parameter

152.14 Query Expansion Board Parameter

152.15 Query RF Port Parameter

162.16 Query Specified RF port Parameter

162.17 Configuration of RF port parameter

172.18 Specified RF port Enable Configuration

172.19 Specified RF port Power Configuration

182.20 Specified RF port Cycling Query Configuration.

183.
Reader Operation Functions

183.1 Stop Reading

183.2 Carrier Operation

183.3 IO Output Operation

193.4 IO Input Query Command

193.5 Reboot reader

193.6 Config reading indicate

203.7 Query reading indicate

203.8 Config reading indicate pluse width of output IO

203.9 Query reading indicate pluse width of output IO

214.
ISO18000-6B Tag Operations

214.1 Tag Selection Parameter Configuration

214.2 Read Tag UID Code

224.3 Receiving Tag UID Code

224.4 Read Tag Data

234.5 Write Tag Data

234.6 Lock Tag Data Area

234.7 Query Tag Data Area Lock Status

245.
ISO18000-6C Tag Operation

245.1 Tag Selection Parameters Configuration

245.2 Read Tag EPC Code

255.3 Receiving EPC Code

255.4 Reading Tag TID Code Command

265.5 Receive tag TID code order

265.6 Write EPC code

265.7 Read user data Bank

275.8 Write user data Bank

275.9 Block write Bank data

285.10 Block erase Bank Data

285.11 Configure Visiting password

285.12 Change destruction password

295.13 Tag lock status setting

295.14 Tag Destruction

305.15 EAS Bit zone setting

305.16 Start EAS monitoring

306.
API Setting

306.1 API Versions information inquiry

316.2 Setting API trends library language type

316.3 Get Error Message

316.4 Get Error Code

32Part VI
Appendix A: Error code list

Part I
Overview

1. API Function Package Introduction

The RFID devices provided by supplier would accompany with API function package. When user is developing RFID integrated application system, through calling this API function package, to control UHF series reader and read/write operation on RFID tags.

To call API function package, user doesn't have to know the underlying communication format between computer and reader, neither have to know the interface protocol or the process of reading/writing operation. The user only needs to focus on the functions, to simplify the difficulty of using RFID reader during the process of system integration.

2. API Function Description

· Through API interface function, the following operations are available:

· Establish connection with reader based on serial, USB or Ethernet port.

· Configure and query reader system, RF and communication parameters.

· Achieve the basic operations on tag, such as read, write, lock, etc.

· Achieve the detection and control operations of reader IO input/output status.

Call of API

1. Environment Requirements

The following configurations are needed when user calls for API package:

Computer configuration: PIII 600MHz, 128M Memory, Windows XP/2003 Operation System, etc.

2. File Included

API function package including the following files:

· RFIDAPI.dll

· RFIDAPI.lib

· RFIDAPIEXPORT.h

3. API Call Methods

Add the files which Section 2.2 mentions to the project, and add the following sentence to source code: #include "RFIDAPIEXPORT.h", and then call the functions in it directly.

Please refer to the specific functions and features described in Part 4.

Part II
Special Explanation

1. About Tag

1.1 EPC Tag

EPC Class1 Gen2 is UHF frequency band RFID tag standard defined by EPC Global, which is currently known as EPC tag. The EPC tag is defined as ISO18000-6C standard after it is adapted by International Standardization Organization, the content of the two standards are basically the same. In this file and API function package, EPC tag is unified as ISO18000-6C or 6C tag, and will no longer be highlighted.

1.2 ISO8000-6B Tag

Currently, the ISO18000-6B tags are mostly from NXP, and general configuration is 224-byte data bank.

[image: image3.emf]0 7 8 223

UID

general data bank

Figure.3-1 ISO18000-6B tag data bank configuration

The first 8bytes (address 0~7) is UID code, which is unique and locked in factory, only executing read operation.

8～223 bytes is general data bank, which can execute the operations such as write, read, lock and lock status querying.

When operating on ISO18000-6B general data bank, user must be aware that data address should not exceed the maximum bytes, which means parameter "start address" + "data length" not greater than 223.

Before operate on tag data bank, user should better confirm with tag provider for specific parameters.

1.3 ISO18000-6C Tag

There are several ISO18000-6C chip suppliers, and their data bank configurations are different due to applications and cost.

Popular configuration of data bank:

[image: image4.emf]USER Bank

TID Bank

EPC Bank

RESERVED Bank Access Password

Kill Password

8byte

28byte

12byte*

4byte

4byte

Figure.3-2 ISO18000-6B tag data bank configuration

TID Bank of ISO18000-6C tag is similar with UID Code of ISO18000-6B tag, and is required to be unique. While ISO18000-6C tag from some of these factories has no TID Bank, or with TID Bank but without unique TID code. There's only unified code from factory, some tags even has 4bytes TID Bank only.

EPC Code of ISO18000-6C tag is e-code, which is 0~64bytes according to protocol definition. Currently, tags from most factory is 12bytes (the actual length is greater than 12byte, but user usually doesn't involve in the rest content)

The length of USER Bank (user data area) is different due to different factory or model, some even without USER bank. Most tag factories use 28byte data bank.

RESERVED Bank including two areas: access password area and deactivating password area, 4byte each.

When operating on ISO18000-6C data banks, user must be aware that data address should not exceed the maximum bytes, which means parameter "start address" + "data length" not greater than 223.

Before operate on tag data bank, user should better confirm with tag provider for specific parameters.

2. About Reader

2.1 Antenna Port

The fixed reader usually has several antenna ports (F805 with 4 antenna ports). Based on this, user can equip with multi-antenna to achieve one reader operates on multi-spots, or operates on the same spot from different angle to ensure tag identifying accuracy. The function of antenna port is the same, working with time rolling method. In tag operation process, user has to point out which one to use. When the "port number" value is "0x01～0x04", the corresponding reader antenna port is 1#~4#. If it's "0x00", this requires all the usable ports of reader to query in roll.

2.2 Multi Reader

· User application software can simultaneously control multiple readers simultaneously, for the reader's recognition through the following ways:

· Serial or USB connection is achieved through the serial port number. When initial the serial or USB port, initialization function would return an initialization handle, and every operation function provides a handle as a mark for identifying different readers.

· If using multi-bus mode like RS-485, the initialization handle is the same, but the data bus address frame difference.

· If using Ethernet connection, you have to initial an Ethernet with software for different IP address and returning to each handle, and then call a different handle to a different IP.

API Function List

· API function package including five functions: Communication Control Function, System Parameter Configuration Function, Reader Operation Function, Tag Operation Function and API Configuration Function.

· Communication control function includes establishing intercommunication connection between computer and reader, and the relative functions in communication process control.

· System parameter configuration function is used to query the reader configuration parameters, including communication parameters, the RF parameters.

· Reader operation function is to control the reader implementing the manipulation applications as switching on/off carrier, IO operation.

· Tag operation function is the specific operation function as reading, writing, locking a tag. The following document will describe ISO18000-6B and ISO18000-6C separately.

· API configuration function is used to configuring relative information for querying API function package.

1. Communication Control Function

	No.
	Name of Function
	Description

	1
	UHF_TCPInit
	This function is to initial configuration parameter of computer Ethernet.

	2
	UHF_COMInit
	This function is to initial computer serial port and parameter.

	3
	UHF_USBInit
	This function is to initial computer USB port and parameter.

	4
	UHF_Open
	Create connection based on one of the serial port, USB port or Ethernet.

	5
	UHF_Close
	Close the established connection.

	7
	UHF_Reconnect
	Reconnect reader

	8
	UHF_HeartSend
	Check the connection status of communication links

2. System Parameter Configuration Function

	No.
	Name of Function
	Description

	1
	UHF_SysInfSet
	To configure system parameter of reader.

	2
	UHF_SysInfQuery
	To query system parameter of reader.

	3
	UHF_WorkModeSet
	To set work mode of reader.

	4
	UHF_ParmOp
	To operate the input/output of reader parameter list.

	5
	UHF_RFParaSet
	To set reader RF parameter.

	6
	UHF_RFParaQuery
	To query reader RF parameter.

	7
	UHF_CommunicatParaSet
	To set reader communication parameter.

	8
	UHF_CommunicatParaQuery
	To query reader communication parameter.

	9
	UHF_NetParaSet
	To set reader network parameter.

	10
	UHF_NetParaQuery
	To query reader network parameter.

	11
	UHF_TagOpParaSet
	To set tag operation parameter

	12
	UHF_TagOpParaQuery
	To query tag operation parameter

	13
	UHF_ExtendBroadParaSet
	To set reader expansion board parameter.

	14
	UHF_ExtendBroadParaQuery
	To query reader expansion board parameter.

	15
	UHF_TotalAntennaParmQuery
	To query all RF ports parameters

	16
	UHF_AntennaParmQuery
	To query Specified RF port Parameter

	17
	UHF_AntennaParmSet
	To set RF port parameters

	18
	UHF_SetAntennaPortEnable
	To set port enable

	19
	UHF_SetAntennaPower
	To set port power

	20
	UHF_SetAntennaTime
	To set port read time

3. Reader Operation Function

	No.
	Function Name
	Description

	1
	UHF_PowerOff
	To stop reading

	2
	UHF_CarrierWaveOp
	To control the carrier operation of reader.

	3
	UHF_IOOperate
	To control the IO output operation of reader.

	4
	UHF_IOStateQuery
	To query the IO input status of reader.

	5
	UHF_Reboot
	To reboot reader

	6
	UHF_Reading_IOConfig
	To config buzzer status

	7
	UHF_Reading_IOQuery
	To query buzzer status

	8
	UHF_IOPulseWidthSet
	To config the pulse width of output IO

	9
	UHF_IOPulseWidthQuery
	To query the pulse width of output IO

4. Tag Operation Function

	No.
	Function Name
	Description

	1
	UHF_6BTagSelect
	Command the reader to select 6B tag.

	2
	UHF_6BReadUIDCode
	Command the reader to read UID code on 6B tag.

	3
	UHF_6BReadUserData
	Command the reader to reader data on 6B tag data bank.

	4
	UHF_6BRevUIDMsg
	To receive UID code of 6B tag, returning from reader.

	5
	UHF_6BWriteUserData
	Command the reader to write data on 6B tag data bank.

	6
	UHF_6BTagLock
	Command the reader to lock 6B tag data bank.

	7
	UHF_6CTagSelect
	Command the reader to select 6C tag.

	8
	UHF_6CReadEPCCode
	Command the reader to read EPC code on 6C tag.

	9
	UHF_6CRevEPCMsg
	To receive the EPC code returning from reader.

	10
	UHF_6CReadTIDCode
	Command the reader to read TID code of 6C tag

	11
	UHF_6CRevTIDMsg
	To receive TID code of 6C tag returning from reader.

	12
	UHF_6CWriteEPCCode
	Command the reader to rewrite EPC code of 6c tag.

	13
	UHF_6CReadUserData
	Command the reader to read user data bank of 6C tag.

	14
	UHF_6CWriteUserData
	Command the reader to write data to 6C tag user data bank.

	15
	UHF_6CWriteBankData
	Command the reader to operate 6C tag Bank.

	16
	UHF_6CClearBankData
	Command the reader to block-erase 6C tag Bank.

	17
	UHF_6CAccessPWDSet
	Command the reader to rewrite access password of 6C tag.

	18
	UHF_6CDestroyPWDSet
	Command the reader to rewrite destruction password of 6C tag.

	19
	UHF_6CTagLock
	Command the reader to lock 6C tag.

	20
	UHF_6CTagKill
	Command the reader to deactivate 6C tag.

	21
	UHF_6CEASFlagSet
	Command the reader to set EAS bits of 6C tag.

	22
	UHF_6CEASMonitorEnable
	Command the reader to monitor EAS.

5. API Configuration Function

	No.
	Function Name
	Description

	1
	UHF_Copyright
	Information querying function of API software.

	2
	UHF_SetLanguageType
	Set function of API language type.

	3
	UHF_GetErrorMessage
	Get err information

	4
	UHF_GetErrorCode
	Get err code

API Function Description

1. Communication Control Function

1.1 TCP Parameter Initialization

	Description
	By an argument, this function is used to configure the computer's Ethernet applications, initialization of a SOCKET, to prepare a connection based on the Ethernet interface.

	Prototype
	bool UHF_TCPInit (void** pHandle,char *pHostName, int nsocketPort)

	Parameter
	pHandle
	the preservation of opening ports handle

	
	pHostName
	reader IP address

	
	nsocketPort
	reader SOCKET port, default is 7086

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

1.2 COM Port Parameter Initialization

	Description
	By an argument, this function is to initial the specified computer COM port, preparing for the connection based on serial port.

	Prototype
	Bool UHF_COMInit(void** pHandle, unsigned char nBusAddr, char *pComNum, int nBaud)

	Parameter
	pHandle
	the preservation of opening ports handle

	
	nBusAddr
	the Bus address, default is 0

	
	pComNum
	COM1－COM4 communication mode is only valid in the COM

	
	nBaud
	serial communication speed, default is 19200

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

1.3 USB Parameter Initialization

	Description
	Reader USB interface, the current application is a virtual serial port, so the use of USB interface also need to initialize the COM port. Through the argument this function initializes the computer COM port, to prepare USB-based connection.

	Prototype
	Bool UHF_USBInit(void** pHandle,unsigned char nBusAddr,char * pUSBNum,int nBaud)

	Parameter
	pHandle
	the preservation of opening ports handle

	
	nBusAddr
	the Bus address, default is 0

	
	pUSBNum
	COM1－COM4 (COM1-COM4 is virtual serial port, USB switching communication protocol) is only valid to USB communication mode.

	
	nBaud
	USB port communication speed, default is 152000

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

1.4 UDP Parameter Initialization

	Description
	By an argument, this function is used to configure the computer's Ethernet applications, initialization of a SOCKET, to prepare a connection based on the Ethernet interface.

	Prototype
	bool UHF_UDPInit (void** pHandle,char *pHostName, int nsocketPort)

	Parameter
	pHandle
	the preservation of opening ports handle

	
	pHostName
	reader IP address

	
	nsocketPort
	reader udp port, default is 7088

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

1.5 Establish Connection

	Description
	Create connection based on one of the following interfaces, as serial port, USB port, Ethernet port or any other ports.

	Prototype
	bool UHF_Open(void* pHandle)

	Parameter
	pHandle
	the preservation of opening ports handle

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

1.6 Close the Connection

	Description
	Close the connection has been established.

	Prototype
	bool UHF_Close(void *pHandle)

	Parameter
	pHandle
	the preservation of opening ports handle

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

1.7 Re-connect reader

	Description
	Reconnect reader

	Prototype
	bool UHF_Reconnect(void *pHandle)

	Parameter
	pHandle
	the preservation of opening ports handle

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

1.8 Check the connection

	Description
	Check the connection status of communication links

	Prototype
	bool UHF_HeartSend (void *pHandle)

	Parameter
	pHandle
	the preservation of opening ports handle

	Return
	true
	Operation Success;

	
	False
	Operation Failed.

2. Configuration of System Information

2.1 System Information Setting

	Description
	The function is used to set reader system configuration parameters, such as the name of readers, the passwords.

	Prototype
	bool UHF_SysInfSet (void * pHandle, unsigned char nType, unsigned char* pParm, unsigned char nLen)

	Parameter
	pHandle
	the preservation of opening ports handle

	
	
	configuration type of system information

	
	
	nType
	Definition
	Length

	
	
	0
	Name of Reader

	8bytes

	
	
	10

	Access Password of Reader System
	6bytes

	
	pParm
	system parameter

	
	nLen
	length of system parameter

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

2.2 Query of System Information

	Description
	This function is used to query the reader system information and other parameters, see the following query type as the "information type" defined.

	Prototype
	bool UHF_SysInfQuery (void* pHandle ,unsigned char nType, unsigned char *pPara, unsigned char *pLen)

	Parameter
	pHandle
	the preservation of opening ports handle

	
	nType
	the information type for query(as following)

	
	pParm
	point to the pointer of memory which receives reader parameter data

	
	nLen
	pLen the length of pointed memory

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

	Explanation:
nType(information type) definition description:

	nType
	Definition
	Length

	0x00
	Name of Reader
	8bytes

	0x01
	Model of Reader
	6bytes

	0x02
	Factory Serial No. of Reader
	8bytes

	0x03
	Software Version of Reader Processor

	4bytes

	0x04
	Software Version of Reader Decoding Unit

	4bytes

	0x05
	Hardware Version No. of Baseband Circuit
	4bytes

	0x06
	Hardware Version No. Of RF Circuit
	4bytes

2.3 Configuration of Working Mode

	Description
	This function is used to configure the working mode of the reader.

	Prototype
	bool UHF_WorkModeSet (void* pHandle ,unsigned nType)

	Parameter
	pHandle
	the opening port handle

	
	nType
	the working mode to configure

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nType(information type) definition description:

	Working Mode
	Definition
	Description

	0x00
	Master-slave mode
	Under the command of host computer, reader executes reading tag operation;

	0x01
	Preset Mode
	The Reader executes tag operation based on preset command;

	0x02
	Trigger Mode
	The reader triggers tag operation command according to IO input;

	0x03
	Timing Mode
	According to the system clock timing, reader executes tag operation.

2.4 Operation on System Parameter List

	Description
	This function is used to operate parameter list of reader (for querying or configuring large quantity of reader parameter), including input/output whole or some part of the system parameter list.

	Prototype
	bool UHF_ParmOp (void* pHandle ,unsigned char nType, unsigned char nStartAddrr, unsigned char nLen, unsigned char *pData, unsigned char *pDataLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	working mode of operating parameter list(as explanation)

	
	nStartAddrr
	to specify the start-address of operating reader parameter list

	
	nLen
	to specify the length of reader system parameter list

	
	pData
	incoming data, or outgoing data

	
	pDataLen
	length of pData

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nType parameter list working mode:
	0x00
	restore the system parameter list to factory settings

	0x01
	afferent system parameter list

	0x02
	efferent system parameter list

Note: when working mode is 0x00, both start-address and operation lengths are meaningless.

2.5 Configuration of Carrier

	Description
	This function is used for configuring parameter of reader RF carrier.

	Prototype
	bool UHF_RFParaSet (void* pHandle ,unsigned char nType, int nParaLen,unsigned char* pPara)

	Parameter
	pHandle
	the opening port handle

	
	nType
	parameter type of the set parameter list(as explanation)

	
	nParaLen
	length of pPara

	
	pPara
	the set frequency table(as explanation)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
"Parameter Type" defined as following, is a carrier parameter type ready to configure:

0x00 Frequency Hopping Table

"Frequency table" is the values of frequency hopping table reader using, a combination of frequency points 0~15(CE and CN standard); a combination of frequency points 0~49(FCC standard).

2.6 Query Carrier Parameter

	Description
	This function is used for querying parameter settings of reader carrier.

	Prototype
	Bool UHF_RFParaQuery (void* pHandle , unsigned char nType, unsigned char* pPara, unsigned char *pLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	query the type of carrier parameter, definition as 5.2.5

	
	pPara
	returning parameter of frequency table

	
	pLen
	incoming: length of pPara; Outgoing: length of frequency table

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

2.7 Configuration of Communication Parameter

	Description
	This function is used to Bus communication parameters such as serial ports.

	Prototype
	bool UHF_CommunicatParaSet (void* pHandle ,unsigned char nType, unsigned char* pPara, unsigned char nLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	configuration parameter type(as explanation)

	
	pPara
	reader serial Bus parameter

	
	nLen
	length of pPara

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nType configuration parameter type:

	0x00
	serial Bus device address

	0x01
	RS-232 Bus speed

	0x02
	RS-485 Bus speed

Definition of serial Bus device address: when a reader is using multi-node Bus (such as RS-485 Bus), the reader node number is device address. The length of address is 1bytes, value 1~254, 0x00 and 0xff is broadcast address.

RS-232 Bus speed: communication speed of reader RS-232 serial Bus, and data defined as following

	0x00
	4800bps

	0x01
	9600 bps

	0x02
	19200 bps

	0x03
	38400 bps

	0x04
	57600 bps

	0x05
	115200 bps

RS-485 Bus speed: communication speed of RS-485 serial Bus, definition the same as RS-232 serial Bus

2.8 Query Communication Parameter

	Description
	This function is used for querying communication parameter of reader serial Bus.

	Prototype
	bool UHF_CommunicatParaQuery (void* pHandle ,int nType, unsigned char* pPara,unsigned char *pLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	configuration parameter type(as explanation)

	
	pPara
	query reader bus parameter

	
	pLen
	incoming: length of pPara; outgoing: length of reader bus parameter

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation: definition of nType is the same as 5.2.7.

2.9 Configuration of Network Parameter

	Description
	This function is used to configure Ethernet parameter, such as reader IP address.

	Prototype
	bool UHF_NetParaSet (void* pHandle ,unsigned char nType, unsigned char* pPara, unsigned char nLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	configuration parameter type(as explanation)

	
	pPara
	configuration Ethernet parameter data(as explanation)

	
	nLen
	length of pPara

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nType is the parameter type:

	0x01
	MAC address

	0x02
	IP address

	0x03
	TCP SOCKET number

	0x04
	UDP SOCKET number

*IP configuration Ethernet IP parameters, totally 12bytes in turn including 4bytes IP address, 4bytes mask, 4bytes default gateway. It's not compatible with IPV6 format currently.

*SOCKET number when host computer and reader communicate via Ethernet, using the socket. This function is used for the reader to identify application program of host computer, the default socket number is 7086、7088. When the socket port is blocked by firewall or occupied by other applications in an Ethernet network system, user is available or legal to use this function to modify port number. Recommended to use with caution!

2.10 Query Network Parameter

	Description
	This function is used to query Ethernet parameter, such as reader IP address.

	Prototype
	bool UHF_NetParaQuery(void* pHandle ,int nType, unsigned char* pPara,unsigned char *pLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	query parameter type(as explanation)

	
	pPara
	the returning network parameter data

	
	pLen
	incoming: length of pPara; outgoing: actual returning length

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

	Explanation:
nType is parameter type, definition as 5.2.9

	0x01
	MAC address

	0x02
	IP address

	0x03
	TCP SOCKET port number

	0X04
	UDP SOCKET port number

2.11 Configuration of Tag Operation Parameter

	Description
	This function is used to configure the parameters when a reader is operating to read/write tags.

	Prototype
	bool UHF_TagOpParaSet (void* pHandle ,unsigned char nType, unsigned char *pPara,unsigned char nLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	configuration parameter type(as explanation)

	
	pPara
	configuration tag operation parameter

	
	nLen
	incoming: length of pPara; outgoing: parameter length of tag operation

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nType is configuration parameter type, including:
	Type
	Explanation
	Returning information length

	0x10
	Q value of the default
	1bytes

	0x11
	select parameter(BANK/address/mask/data)
	Nbytes

	0x13
	default length of EPC code(the following is parameter configuration of IS018000-6B tag)
	1bytes

	0x21
	select parameter(type/address/mask/data)
	Nbytes

2.12 Query Tag Operation Parameter

	Description
	This function is used to query the operation parameters when reader is operating on tags.

	Prototype
	bool UHF_TagOpParaQuery (void* pHandle ,unsigned char nType, unsigned char* pPara, unsigned char *pLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	configuration parameter type(as explanation)

	
	pPara
	pointing to the memory pointer which saving configuration parameters

	
	Len
	incoming: length of pPara; outgoing: parameter length of tag operation

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nType is parameter type, definition as part V 2.11
2.13 Configuration of Expansion Board Parameter

	Description
	This function is used to configure expansion board parameters.

	Prototype
	bool UHF_ExtendBroadParaSet (void* pHandle ,unsigned char nType, unsigned char pSendChunnel)

	Parameter
	pHandle
	the opening port handle

	
	nType
	configuration tag operation parameter type

	
	
	0

IO output operation

1

IO input operation

	
	pSendChunnel
	configuration tag operation parameter

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

2.14 Query Expansion Board Parameter

	Description
	This function is used to query expansion board parameters.

	Prototype
	bool UHF_ExtendBroadParaQuery (void* pHandle ,unsigned char nType, char* pPara, unsigned char* pLen)

	Parameter
	pHandle
	the opening port handle

	
	nType
	configuration tag operation parameter type

	
	
	0

IO output operation

1

IO input operation

	
	pPara
	query parameters

	
	pLen
	incoming: length of pPara; outgoing: length of query parameters

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

2.15 Query RF Port Parameter

	Description
	This function is used to query RF port parameter of reader.

	Prototype
	Bool UHF_TotalAntennaParmQuery(void* pHandle,unsigned char *szAntennaPara,unsigned char *pLen)

	Parameter
	pHandle
	the opening port handle

	
	szAntennaPara
	all RF port parameters(as explanation)

	
	pLen
	incoming: length of szAntennaPara; outgoing: all RF port parameters length

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
all RF port parameters including

	Port Enable
	4bytes
	Antenna port enable

	Power Output
	4bytes
	Antenna port output power

	Cycling Query
	4bytes
	Antenna port cycling query

"Port Enable" configuration parameter length is 4bytes, in turn for antenna 1~4 port configuration, 0x00 is "forbid", 0x01 is "allow".

"Power Output" configuration parameter length is 4bytes, in turn for antenna 1~4 port power output parameter (0x00~0x0A), and data defined as following

	0x00
	20.0(dBm)

	0x01
	21.0(dBm)

	0x02
	22.0(dBm)

	0x03
	23.0(dBm)

	0x04
	24.0(dBm)

	0x05
	25.0(dBm)

	0x06
	26.0(dBm)

	0x07
	27.0(dBm)

	0x08
	28.0(dBm)

	0x09
	29.0(dBm)

	0x0A
	30.0(dBm)

"Cycling Query" configuration parameter length is 4bytes, in turn for antenna 1~4 port cycling query parameter, which is the working time for the specific port, working time=time parameter*100ms.

2.16 Query Specified RF port Parameter

	Description
	This function is used to query RF parameter of reader parameter table.

	Prototype
	bool UHF_AntennaParmQuery (void* pHandle, unsigned char nAntenna, unsigned char * pAntennaEnable, unsigned char *pAntennaPower, unsigned char *pAntennaQueryTime)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number to configure

	
	nAntennaEnable
	antenna port enable, 0x00 is "forbid", 0x01 is "allow"

	
	nAntennaPower
	power output, in unit of dBm

	
	nAntennaQueryTime
	in cycling query mode, the working time of this port(ms)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

2.17 Configuration of RF port parameter

	Description
	This function is used to configure RF port parameter of reader parameter table.

Prototype:

	Prototype
	bool UHF_AntennaParmSet(void* pHandle ,unsigned char *pPara,unsigned char nLen)

	Parameter
	pHandle
	the opening port handle

	
	pPara
	configure RF port parameter of reader parameter table(as explanation)

	
	nLen
	parameter length, usually is 12bytes

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
all RF port parameters including

	Port Enable
	4bytes
	Antenna port enable

	Power Output
	4bytes
	Antenna port output power

	Cycling Query
	4bytes
	Antenna port cycling query

"Port Enable" configuration parameter length is 4bytes, in turn for antenna 1~4 port configuration, 0x00 is "forbid", 0x01 is "allow".

"Power Output" configuration parameter length is 4bytes, in turn for antenna 1~4 port power output parameter (0x00~0x0A), and data defined as following

	0x00
	20.0(dBm)

	0x01
	21.0(dBm)

	0x02
	22.0(dBm)

	0x03
	23.0(dBm)

	0x04
	24.0(dBm)

	0x05
	25.0(dBm)

	0x06
	26.0(dBm)

	0x07
	27.0(dBm)

	0x08
	28.0(dBm)

	0x09
	29.0(dBm)

	0x0A
	30.0(dBm)

"Cycling Query" configuration parameter length is 4bytes, in turn for antenna 1~4 port cycling query parameter, which is the working time for the specific port, working time=time parameter*20ms.

2.18 Specified RF port Enable Configuration

	Description
	This function is used to configure reader specified RF port enable.

	Prototype
	bool UHF_SetAntennaPortEnable (void* pHandle, unsigned char nAntenna, unsigned char nEnable)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number for configuring

	
	nEnable
	enable configuration

	
	
	0x00

forbid

0x01

allow

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

2.19 Specified RF port Power Configuration

	Description
	This function is used to configure reader specified RF port power.

	Prototype
	bool UHF_SetAntennaPower (void* pHandle,unsigned char nAntenna,unsigned char nPower)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	RF port number 1~4

	
	nPower
	Configuration power(0x00~0x0A)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nPower defined as following
	0x00
	20.0(dBm)

	0x01
	21.0(dBm)

	0x02
	22.0(dBm)

	0x03
	23.0(dBm)

	0x04
	24.0(dBm)

	0x05
	25.0(dBm)

	0x06
	26.0(dBm)

	0x07
	27.0(dBm)

	0x08
	28.0(dBm)

	0x09
	29.0(dBm)

	0x0A
	30.0(dBm)

2.20 Specified RF port Cycling Query Configuration.

	Description
	This function is used to configure each RF port polling time, according to the importance of each port and reading requirements to set time, thus to optimize system.

	Prototype
	bool UHF_SetAntennaTime (void* pHandle,unsigned char nAntenna,unsigned char nTime)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	RF port number 1~4

	
	nTime
	set polling time, working time=polling time*100ms

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

3. Reader Operation Functions

3.1 Stop Reading

	Description
	This function is used to inform the reader stop the current executing instructions related to operation on tags.

	Prototype
	bool UHF_PowerOff(void *pHandle);

	Parameter
	pHandle
	the opening port handle

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

3.2 Carrier Operation

	Description
	This function is used to control reader carrier, opening the carrier and output or stop outputting by specified RF port.

Knowing from principle of radio frequency identification, when reading tags the reader is required to have continuous carrier output, and providing energy for tag operation. This function is used to control open/stop of carrier. But in actual application, reader would auto-open carrier in executing tag operation and would auto-stop after tag operation finished. Thus users usually don't need to use it.

	Prototype
	bool UHF_CarrierWaveOp(void* pHandle ,unsigned char nType, unsigned char nPort)

	Parameter
	pHandle
	the opening port handle

	
	nType
	carrier operation mode

	
	
	0x00

open

0x01

stop

	
	nPort
	the open carrier port 1~4

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

3.3 IO Output Operation

	Description
	This function is used to control reader operation on multi IO output port.

	Prototype
	bool UHF_IOOperate(void* pHandle,unsigned char nPort,unsigned char nState)

	Parameter
	pHandle
	the opening port handle

	
	nPort
	IO output port number 1~4

	
	
	0x00

all ports

0x01

port 1

0x02

port 2

0x03

port 3

0x04

port 4

	
	nState
	IO output power level state(as explanation)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nState output state:

	0x00
	specify IO switch to low power level state

	0x01
	specify IO switch to high power level state

	0x02
	specify IO output 10ms positive pulse signal

	0x03
	specify IO output 10ms negative pulse signal

3.4 IO Input Query Command

	Description
	This function is used to query reader IO input port status.

	Prototype
	bool UHF_IOStateQuery(void* pHandle,unsigned char *pState)

	Parameter
	pHandle
	the opening port handle

	
	pState
	power level state pointer of input port

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
port status is indicated with bytes:

	0x00
	specify IO switch to low power level state

	0x01
	specify IO switch to high power level state

	0x02
	specify IO output 10ms positive pulse signal

	0x03
	specify IO output 10ms negative pulse signal

	
	

	Bit
	Bit7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	Definition
	Reserve
	Reserve
	Reserve
	Reserve
	Reserve
	Reserve
	Port 2
	Port 1

Port Status: 0 low power level; 1 high power level

3.5 Reboot reader

	Description
	This function is used to reboot reader

	Prototype
	bool UHF_Reboot(void* pHandle,unsigned char nMode)

	Parameter
	pHandle
	the opening port handle

	
	nMode
	0x00 general

0x01 reboot

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

3.6 Config reading indicate

	Description
	Config reading indicate

	Prototype
	bool UHF_Reading_IOConfig (void* pHandle,unsigned char nConfigBit)

	Parameter
	pHandle
	the opening port handle

	
	nConfigBit
	Bit7

Bit6

Bit5

Bit4

Bit3

Bit2

Bit1

Bit0

R

R

R

IO4

IO3

IO2

IO1

buzzer

0 disable

1 enable

(R: Reserve)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

3.7 Query reading indicate

	Description
	Query reading indicate

	Prototype
	bool UHF_Reading_IOQuery (void* pHandle,unsigned char* pConfigBit)

	Parameter
	pHandle
	the opening port handle

	
	nConfigBit
	Bit7

Bit6

Bit5

Bit4

Bit3

Bit2

Bit1

Bit0

R

R

R

IO4

IO3

IO2

IO1

buzzer

0 disable

1 enable

(R: Reserve)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

3.8 Config reading indicate pluse width of output IO

	Description
	Config reading indicate pluse width of output IO

	Prototype
	bool UHF_IOPulseWidthSet (void* pHandle,unsigned char nIOPort, unsigned char nWidth)

	Parameter
	pHandle
	the opening port handle

	
	nIOPort
	Config IO port(0-4):port 0 is buzzer, port 1\port 2\port3\port4 is IO port

	
	nWidth
	Pulse width (unit100ms)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

3.9 Query reading indicate pluse width of output IO

	Description
	Query reading indicate pluse width of output IO

	Prototype
	bool UHF_IOPulseWidthQuery (void* pHandle,unsigned char nIOPort, unsigned char* pWidth)

	Parameter
	pHandle
	the opening port handle

	
	nIOPort
	Config IO port(0-4):port 0 is buzzer, port 1\port 2\port3\port4 is IO port

	
	nWidth
	Pulse width (unit100ms)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

4. ISO18000-6B Tag Operations

4.1 Tag Selection Parameter Configuration

	Description
	This function is used to configure selective parameters when reader operates on ISO18000-6B tags. Reader would use the selected parameter to operate on ISO18000-6B tag next time, and realizing selective operation on multi ISO18000-6B tags of some type or one tag(UID code or several bytes in data, equal, not equal, greater than/ less than the set data).

	Prototype
	bool UHF_6BTagSelect (void* pHandle, unsigned char nType, unsigned char nStartAddr, unsigned char nDataBite, unsigned char * Data)

	Parameter
	pHandle
	the opening port handle

	
	nType
	match type(as explanation)

	
	nStartAddr
	start address of match data

	
	nDataBite
	match mask

	
	Data
	8bytes for matching data

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
definition of match type

	0x00
	SELECT
	Equal

	0x01
	SELECT
	Not equal

	0x02
	SELECT
	Greater than

	0x03
	SELECT
	Less than

	0x04
	UNSELECT
	Equal

	0x05
	UNSELECT
	Not equal

	0x06
	UNSELECT
	Greater than

	0x07
	UNSELECT
	Less than

Match the data start address: Indicating the start address to match the data, the maximum of match data should not exceed tag data bank. Currently, general data bank of ISO18000-6B tag is 224bytes, so the maximum is 216bytes.

Before using this function, user should better ask tag provider fot the length of tag data bank.

Match the data mask bit: Indicating from start address, which bytes are matching with matched data.

Match Data: Give the data which is to match tag data bank data, totally 8bytes.

Select command used to configure the reader back to the operating instructions specified only for a class of or one tag; the reader would cache the received parameter after receiving the selection instruction. On executing the next ISO18000-6B tag operation command, adding the parameter to the SELECT command (before sending tag operation command, every reader will send SELECT command), and enabling the command valid only to match tag.

If the reader doesn't receive tag selection command before executing tag operation command, the sending of command would use the default selected parameter.

Once the selection parameter configuration command is successful, the reader's next operation on ISO18000-6B tag will follow the configured parameter. After the operation, the selection parameter would restore to default, which means this command is a one-time operation, only effective for next reading.

If you need to use some selection parameter for long-term, you can execute "Tag Operation Parameter Configuration" command to modify the default tag selection command.

Selection command doesn't provide query function, when host computer is not sure about current parameters, and sending this command for re-configuration.

4.2 Read Tag UID Code

	Description
	This function is used to send "read ISO18000-6B tag UID code" command to reader.

	Prototype
	bool UHF_6BReadUIDCode (void *pHandle,unsigned char nAntenna,unsigned char nType)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	operating antenna number(0-cycling query antenna, 1---antenna port 1, 2--antenna port 2, 3---antenna port 3, 4---antenna port 4)

	
	nType
	operation mode

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
nType operation mode
	0x00
	Single reading mode, the reader would read only once and send all the tags' UID code been read, returning to host computer in turn, and later reader would auto-stop reading.

	0x01
	Cycling reading mode, reader returns all the UID code collected to host computer, and will auto-carry on this reading operation, till the host computer issue "stop operation" and then the reading operation will halt.

4.3 Receiving Tag UID Code

	Description
	This function starts receiving operation to receive tag UID code returning from reader.

	Prototype
	int UHF_6BRevUIDMsg (void *pHandle, unsigned char* nAntenna, unsigned char* pUIDData, unsigned char* nUIDLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	antenna number which reads UID code

	
	pUIDData
	the received UID code data

	
	nUIDLen
	incoming: length of pUIDData; outgoing: length of UID data(8bytes)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

4.4 Read Tag Data

	Description
	This function is used to reader data in tag data bank.

	Prototype
	bool UHF_6BReadUserData (void *pHandle ,unsigned char nAntenna,unsigned char nType,unsigned char * pTagID, unsigned char nStartAddr,unsigned char nReadLen, unsigned char *pdata, unsigned char dataLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	antenna number in read operation

	
	nType
	operating mode, set as 0

	
	pTagID
	the target tag 8bytesUID code to read

	
	nStartAddr
	first target address of data bank to read

	
	nReadLen
	the target data length

	
	pdata
	the buffer pointer which stores the collected data

	
	dataLen
	
length of pdata

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:

· This command requires reader to read within specified tag data bank some specified data content and returns to host computer.

· This is a single tag operation command, and must fill in specified tag UID code in "tag UID" parameter.

· Read tag "data start address", which range is from 0x00 to the last bytes address of data area, "data length" range is from 1 to tag total length of data area. It is required to meet "data area start address" + "data area length" not exceeding tag maximum address.

*ISO18000-6B protocol defines reader in executing data area reading operation, the maximum is 8bytes each time, and to read more bytes, multiple operations is needed. This API can automatically check and cut off long data, so users don't need to write many times. It is recommended to write 64bytes every time, as prolonged operation increases the probability of interference.

* The general ISO18000-6B tag data bank is 224bytes, and the field maximum value is 22. Before using this function, user should better query tag provider for its data bank length parameter.

4.5 Write Tag Data

	Description
	This function is used to write data into tag data bank.

	Prototype
	bool UHF_6BWriteUserData (void* pHandle, unsigned char nAntenna, unsigned char nType, unsigned char *pTagID, unsigned char nStartAddrr, unsigned char *pValue, unsigned char *nLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	antenna number in write operation

	
	nType
	operating mode, set as 0

	
	pTagID
	the target tag 8bytesUID code to write

	
	nStartAddr
	the first address to write in data bank(greater than 0x08)

	
	pValue
	the target data to write

	
	nLen
	incoming: length of pValue; outgoing: actual wrote data length

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

*ISO18000-6B protocol defines first 8bytes of tag as UID, usually has been locked in the factory, non-writable.

*ISO18000-6B protocol defines when a reader executing data bank writes operation only 4bytes writable each time. If you want to write more bytes, the reader needs to execute several times of writing operation. But users don't need to read/write more times, as this API can automatically check and cut off long data, so users don't need to write many times. It is recommended to write 64bytes every time, as prolonged operation increases the probability of interference.

4.6 Lock Tag Data Area

	Description
	This function is used to execute tag data in non-reversible lock operation. The locked data bank data can not be rewritten or unlocked.

	Prototype
	bool UHF_6BTagLock (void* pHandle, unsigned char nAntenna, unsigned char nType, unsigned char *pTagID, unsigned char nStartAddrr, unsigned char nLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	antenna number which executing lock operation

	
	nType
	lock operation mode, 0x00 is locked status

	
	pTagID
	8bytes UID code which is to write in tag

	
	nStartAddrr
	first address of data bank to be locked, 8~224bytes

	
	nLen
	Data length of data bank to be locked, "length + start address" should not exceed tag's maximum length.

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:
This command controls reader to execute lock operation on data bank.

Currently, general data bank of ISO18000-6B tags is 224bytes, and the maximum field is 224. Before using this function, users are recommended to ask the provider for length of tag data bank.

4.7 Query Tag Data Area Lock Status

	Description
	This function is used to query tag data bank lock status.

	Prototype
	bool UHF_6BTagLockQuery (void* pHandle, unsigned char nAntenna, unsigned char * pTagID, unsigned char nStartAddrr, unsigned char nLen, unsigned char *pData, unsigned char nDataLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	antenna number on querying operation

	
	pTagID
	8bytes tag ID

	
	nStartAddrr
	first address of queried data bank, 8~224bytes

	
	nLen
	data length of queried data bank, "length + start address" should not exceed tag's maximum length

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

5. ISO18000-6C Tag Operation

5.1 Tag Selection Parameters Configuration

	Description
	This function is used to configure the selection parameters when reader operates on the ISO18000-6C Tag. The reader will use the selection parameter at the next operation. This realizes making selectivity operation on multi ISO18000-6C Tags with similar properties (EPC code, TID code or some bytes data in user data field).

	Prototype
	bool UHF_6CTagSelect (void *pHandle, unsigned char nBank ,unsigned char nStartAddr,unsigned char MaskBit, unsigned char *Data ,unsigned char Datalength,unsigned char nSessionZone, unsigned char nActiveFlag, unsigned char nCutFlag)

	Parameter
	pHandle
	the opening port handle

	
	nBank
	specify matching data field Bank(as explanation)

	
	nStartAddr
	the start address of the specified matching data field Bank

	
	MaskBit
	specify matching data bit number

	
	Data
	specify matching data

	
	Datalength
	data length

	
	nSessionZone
	specify matching data session field(as explanation)

	
	nActiveFlag
	specify matching data activity flag(as explanation)

	
	nCutFlag:
	specify matching data cut off flag(as explanation)

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:

Bank matching data field: indicating the data field need match

	0x01
	EPC data code

	0x02
	TID data code

	0x03
	USER data code

The first address of the matching data: It indicates the start address of the matching data. Tags from different manufacturers have different data are size, so does the start address range, but the max-size could not exceed the maximum matching data bank of tag. For specific data, please check with the data user manual. If you are not sure of the maximum data bank, try to read tag operation Band before any other operation. And through this way confirms the maximum data bank of tag. This field uses EVB data format, length of data is changeable. Please see the appendix A for definition of EVB format.

Match the Number of Bit: Indicates the bits of data for matching, taking Bit as a unit. Be aware that start address of matched data + matching bit number should not exceed the maximum value of data bank.

Match Data: Indicates the data for matching, and matched data is counted by bits while command is transmitted in bytes. When the match data is not full bytes, reader program will automatically cut the extra bits according to match bit number.

This function is used to set the reader tag operating parameters.

Selection command is only valid to next one operation. If you want it to be valid to all command, you can use "tag operation configuration command" to set the match rule as default.

Example:
Match Bit number = 13, then the match data should be
	B7
	B6
	B5
	B4
	B3
	B2
	B1
	B0
	B7
	B6
	B5
	B4
	B3
	B2
	B1
	B0

	D
	D
	D
	D
	D
	D
	D
	D
	D
	D
	D
	D
	D
	0
	0
	0

D: Bit Data 0: Additional Bits

5.2 Read Tag EPC Code

	Description
	This function is used to instruct the reader executing "reader EPC code command".

	Prototype
	bool UHF_6CReadEPCCode (void *pHandle,unsigned char nAntenna, unsigned char nType, unsigned char nTagCount)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna number which is operating (0 is antenna rolling read, 1--antenna 1, … , 4--antenna 4)

	
	nType
	operating mode

	
	
	00: Reader returns EPC code of the same tag to host computer only once, and requires the host computer giving "return data confirmation" after receiving the EPC code.

01: Reader returns all the EPC code it collected to host computer, and doesn't require the host computer returning "return data confirmation". Till host computer sends "Amp off" command, the reader stops reading. This operating mode is commonly used.

	
	nTagCount
	This function will also estimate the tag number, estimating the maximum tag number read simultaneously under working environment. It is designed to read 250pcs simultaneously, while the actual read tags exceed 500pcs.

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

5.3 Receiving EPC Code

	Description
	This function is used to receive the EPC code reader returns, probably multiple EPC code is returned.

	Prototype
	int UHF_6CRevEPCMsg (void *pHandle, unsigned char* nAntenna, unsigned char* pEPCData, unsigned char* nEPCLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	antenna number which reads EPC code

	
	pEPCData
	returning EPC code data

	
	nEPCLen
	incoming: length of pEPCData; outgoing: length of EPC data, usually is 12

	Return
	1
	Operation Success;

	
	0
	Operation Failed.

	
	2
	Heart beat package reader returns.

5.4 Reading Tag TID Code Command

	Description
	This function is used to instruct reader reading "tag TID code".

	Prototype
	bool UHF_6CReadTIDCode(void *pHandle, unsigned char nAntenna, unsigned char nType, unsigned char nTagCount)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna number which is operating (0 is antenna rolling read, 1--antenna 1, …, 4--antenna 4)

	
	nType
	operating mode

	
	
	00: Reader returns TID code of the same tag to host computer only once, and requires the host computer giving "return data confirmation" after receiving the EPC code.

01: Reader returns all the TID code it collected to host computer, and doesn't require the host computer returning "return data confirmation". Till host computer sends "Amp off" command, the reader stops reading. This operating mode is commonly used.

	
	nTagCount
	This function will also estimate the tag number, estimating the maximum tag number read simultaneously under working environment. It is designed to read 250pcs simultaneously, while the actual read tags exceed 500pcs.

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:

EPC global sets default bit of TID Bank of EPC Class1 Gen2 tags as 4 double-bits (words), which is 64bits. As the TID is getting marginalization in EPC applications, some factories even cancelled TID Bank. Reader underlying protocol will support different length of TID code.

5.5 Receive tag TID code order

	Description
	This function is used to receive the TID code sent by the ISO18000-6C Tag.

	Prototype
	int UHF_6CRevTIDMsg (void *pHandle, unsigned char* nAntenna, unsigned char* pTIDData, unsigned char* nTIDLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	pTIDData
	TID data return by the reader

	
	nTIDLen
	when input this is the pTIDData length and when output this is the length of TID data

	Return
	1
	Operation Success;

	
	0
	Operation Failed.

	
	2
	The reader returns new TID.

5.6 Write EPC code

	Description
	This function is used to write EPC code

	Prototype
	bool UHF_6CWriteEPCCode(void* pHandle, unsigned char nAntenna, unsigned char nType, unsigned char *pAccessPWD, unsigned char *pWriteData, unsigned char nLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	nType
	the operation type, the value is 0x00

	
	pAccessPWD
	the password for visiting Tag, default value is 4 bytes 0

	
	pWriteData
	the EPC code data needed to write in the Tag

	
	nLen
	the length of the pWriteData

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:

This instruction is used to write EPC code in the Tag.

EPC code length: Length of EPC code for setting Tag and the basic unit is double bytes(words).According to the EPC protocol the value range is 0x00~32H(when setting 00 the EPC Tag will be initialized to empty Tag).EPC global division rule that the EPC code default length is 6 double bytes.

EPC protocol requires the EPC data must be written by words unit and must be written continuously. To simplify the write operation, the reader is designed to only accept read and write EPC data use the starting position as the first address. And it has nonsupport to modify one middle data in the EPC code

There has different EPC data field size in Tags come from different manufacturers. So if the "EPC data length" is more the maximum EPC data filed length the operation will be fail and return the corresponding error code.

Before write the Tag the antenna port must be explicit.

5.7 Read user data Bank

	Description
	This function is used to get to User Bank data in ISO18000-6C Tag.

	Prototype
	bool UHF_6CReadUserData(void* pHandle, unsigned char nAntenna, unsigned int StartAddr, unsigned int nToReadLen, unsigned int nWaitTime ,unsigned char * UserData,unsigned char* pDataLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	StartAddr
	the start address for data reading

	
	nLength
	This is length of the reading data in the target tag, double-byte write and read. If length is 1 then read 2 bytes data or if length is 2 then read 4 bytes data and so on

	
	nWaitTime
	the overtime for data reading(Calculated by ms unit, for 1 s the value is 1000)

	
	UserData
	the data get from User Bank

	
	pDataLen
	when input this the length of the UserData and when output this is the length of the reading data field

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:

This function is used to configure the relevant parameter about the reader Tag operations.

There has different User Bank size in Tags come from different manufacturers. So before read please check the data sheet to make sure the total length (User data Bank first address +User data length) is no more than the User data Bank length. Or the operation will be fail and return the corresponding error code.

Here is no user data Bank in some tag, so when execute the operation the Tag will return error code.

"Maximum Tag data field length" is 64,when read more than 64 bytes data the upper computer should take multi read operations(This is limited by the FPGA decode field size).

5.8 Write user data Bank

	Description
	This function is used to write data in user data Bank of ISO18000-6C Tag.

	Prototype
	bool UHF_6CWriteUserData (void* pHandle, unsigned char nAntenna, unsigned char nType, unsigned char *pAccessPWD, unsigned int nStartAddr,

unsigned int nWaitTime, unsigned char *pWriteData, unsigned int *pToWriteLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	nType
	the operation type, the value is 0

	
	pAccessPWD
	the password for visiting Tag, default value is 4 bytes 0

	
	nStartAddr
	the start address for data writing

	
	inWaitTime
	the overtime for data writing(Calculated by ms unit, for 1 s the value is 1000)

	
	pWriteData
	the data for writing in data Bank of the Tag

	
	pToWriteLen
	When input this is the length of the user data Bank and when output this is the length data actual writing in the data. Word (double byte) is the unit.

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:

There has different User Bank size in Tags come from different manufacturers. So before write please check the data sheet to make sure the total length (User data Bank first address +User data length) is no more than the User data Bank length. Or the operation will be fail and return the corresponding error code.

There is no user data Bank in some tag, so when execute the operation the Tag will return error code.

The start address takes the EVB format. So the data length is variation. For the concrete EVB format please check in Appendix A.

"Write the tag data Bank" means the largest size can write in the data Bank. As the read operation, the reader at a time can write a word (double byte) data and the Tag need 20ms to write the data. When write too much data the probability for PF communication interfering between Tag and reader will increase. It is suggested that upper computer can maximum write 8 words at a time to the reader and divide data in several writing times when the data is larger than the limit.

Please ask supplier to get User data Bank length etc information.

5.9 Block write Bank data

	Description
	This function is used to block write Bank data of ISO18000-6C Tag.

	Prototype
	bool UHF_6CWriteBankData (void* pHandle, unsigned char nAntenna, unsigned char nType, unsigned char *pAccessPWD, unsigned char nBank, unsigned char *pWriteData, unsigned char nLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	nType
	the operation type, default value is 0

	
	pAccessPWD
	the password for visiting Tag, default value is 4 bytes 0

	
	nBank
	Bank for Tag data writing

	
	pWriteData
	the user data for writing in the Tag

	
	nLen
	the length of the writing data

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

5.10 Block erase Bank Data

	Description
	This function is used to block erase Bank data of ISO18000-6C Tag.

	Prototype
	bool UHF_6CClearBankData (void* pHandle, unsigned char nAntenna, unsigned char nType, unsigned char *pAccessPWD, unsigned char nBank, unsigned char nStartAddr, unsigned char nLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	nType
	the operation type, default value is 0

	
	pAccessPWD
	the access password for visiting Tag, default value is0x00

	
	nBank
	bank for Tag data writing

	
	nStartAddr
	the start address of the Tag data for erasing

	
	nLen
	the length of Tag data for erasing

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

5.11 Configure Visiting password

	Description
	This function is used to set visiting password of ISO18000-6C tag.

	Prototype
	bool UHF_6CAccessPWDSet (void *pHandle, unsigned char nAntenna, unsigned char nType, unsigned char *pOrgPWD, unsigned char *pNewPWD)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	nType
	in this operation the value is 0

	
	pOrgPWD
	the primary 4 bytes visiting password, the default value is 4 bytes 0

	
	pNewPWD
	the new 4 bytes visiting password

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:

The default visiting password is 4 bytes 0

If the Bank the password in is not locked, zero passwords can also execute the write operation (Get details in EPC protocol).

5.12 Change destruction password

	Description
	This function is used to Change the destruction password of ISO18000-6C Tag.

	Prototype
	bool UHF_6CDestroyPWDSet (void *pHandle, unsigned char nAntenna, unsigned char *pAccessPWD, unsigned char nType, unsigned char *pDestroyPWD)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	pAccessPWD
	password for Tag visiting,4Bits

	
	nType
	in this operation the value is 0

	
	pDestroyPWD
	4 Bytes password for Tag destruction

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation：

Visiting password: This password is for visiting the Tag. If the Tag destruction password is locked, the right visiting password is need to change the destruction password.

New destruction password: This password is a new one for destruction and the default value is "00000000".

EPC Protocol need nonzero password for the destruct operation.

If the Bank the password in is not locked, zero passwords can also execute the write operation (Get details in EPC protocol).

5.13 Tag lock status setting

	Description
	This function is used to set the tag lock status.

	Prototype
	bool UHF_6CTagLock (void *pHandle, unsigned char nAntenna, unsigned char *pAccessPWD, unsigned char nType, unsigned char nBank)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	pAccessPWD
	password for tag visiting(4Bits)

	
	nType
	the lock type, see the definition in the explanation.

	
	nBank
	the executing Bank，see the definition in the explanation.

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation：

Bank type：ISO18000-6C Every Bank of the tag can have lock operation independently and be configured is different lock status. It need to point the target Bank in the lock operation.

	Code
	definition

	0x00
	the whole Bank

	0x01
	TID Bank

	0x02
	EPC Bank

	0x03
	USER Bank

	0x04
	password for visiting

	0x05
	password for destruction

Lock operation type：ISO18000-6C protocol defines the following 4 lock operation.

	Code
	Definition

	0x00
	Lock

	0x01
	Deblocking

	0x02
	Permanent Lock

	0x03
	Permanent Open

The TID field in the EPC tag has been written with TID code and is configured irreversible permanent status. So there is no effect on TID field when execute "Unlock all the Blank” operation.

5.14 Tag Destruction

	Description
	This function is used to conduct Kill operation on tags

	Prototype
	bool UHF_6CKillTag (void *pHandle, unsigned char nAntenna,unsigned char *pDestroyPWD, unsigned char *pEPC, int nEPCLen)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	pDestroyPWD
	password for tag destruction(4Bits）

	
	pEpc
	EPC code for the target tag

	
	nEPCLen
	EPC code length，default :12

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation:

This deduction operation is irreversible. To avoid the mis-operation to other tags, an attached EPC code field should be added to the instruction. Only after reader getting the matching EPC code from the tag then the operation can be executed. If there is no added field destruction order will be executed without identification.

EPC code length has difference according to different signal tag. Default value is 12 bits.

The default password is "00000000", but according to the protocol the password must be changed before destruction operation.

5.15 EAS Bit zone setting

	Description
	This function is used to set the EAS bit zone.

	Prototype
	bool UHF_6CEASFlagSet(void *pHandle, unsigned char nAntenna, unsigned char nType, unsigned char* pAccessPwd, int nEASFlag)

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	nType
	ESA Setting operation mode

	
	pAccessPwd
	tag visiting password

	
	nEASFlag
	EAS Bit zone setting

	
	
	0
cancel EAS Bit zone

1
set EAS Bit zone

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Explanation：
This function needs tags with this application, at present some tags of NXP support this function. Please ask supplier to get details.

5.16 Start EAS monitoring

	Description
	This function is used to start or stop EAS monitoring function.

	Prototype
	bool UHF_6CEASMonitorEnable (void *pHandle, unsigned char nAntenna, unsigned char nSetEAS)

Incoming Parameters:

	Parameter
	pHandle
	the opening port handle

	
	nAntenna
	the antenna port number when operating tags(1-4)

	
	nSetEAS
	EAS monitoring operation control

	
	
	0x00 -> Read end the EAS monitoring operation

0x01 -> Read start the EAS monitoring operation

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

6. API Setting

6.1 API Versions information inquiry

	Description
	This function is used to inquire the current API function Versions information.

	Prototype
	bool UHF_Copyright (void *pHandle, char* copyright)

	Parameter
	pHandle
	the opening port handle

	
	copyright
	versions information

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

6.2 Setting API trends library language type

	Description
	This function is used to set API trends library language type.

	Prototype
	bool UHF_SetLanguageType(void *pHandle, char* szType)

	Parameter
	pHandle
	the opening port handle

	
	szType
	language form

	
	
	cn
Simplified Chinese

tw
Chinese Traditional

en
English.

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

6.3 Get Error Message

	Description
	This function is used to get returning error message from reader.

	Prototype
	bool UHF_GetErrorMessage(void *pHandle,char *szMsg, int nLen)

	Parameter
	pHandle
	the opening port handle

	
	szMsg
	returning error message

	
	nLen
	szMsg buffer length

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

6.4 Get Error Code

	Description
	This function is used to get returning error code from reader.

	Prototype
	bool UHF_GetErrorCode (void *pHandle,int *pCode);

	Parameter
	pHandle
	the opening port handle

	
	pCode
	returning error code

	Return
	true
	Operation Success;

	
	false
	Operation Failed.

Appendix A: Error code list

When executing order from upper computer failed, the reader will send back the error code and point out the operation failure reason.

Error code field is dividing as following:

	0x10-0x1F
	Reader system error code

	0x20-0x2F
	Reader operation error code

	0x60-0x6F
	Reader data transmission error code

	0xA0-0xAF
	ISO18000-6B Tag operation error code

	0xB0-0xBF
	ISO18000-6CTag operation error code

Error code is definitely defined as below:

Table A-1 Reader system error code list

	Error code
	Error code definition

	0x10
	Wrong software version in Reader decoding unit

	0x11
	Wrong hardware in Reader base band board

	0x12
	Wrong hardware in Reader RF board

	0x13
	Self-checking error in reader system parameter list

	0x14
	Self-checking error in Reader base band board

	0x15
	Self-checking error in Reader RF board

	0x16
	Ethernet Detection error in Reader

	0x17
	RTC Detection error in Reader

	0x18
	External Rom detection in Reader

	0x19
	Retain

	0x1A
	Retain

	0x1B
	Retain

	0x1C
	Retain

	0x1D
	Retain

	0x1E
	Retain

	0x1F
	Unknown system error code

Table A-2 Reader operation error code list

	Error code
	Error code definition

	0x20
	Operation password error

	0x21
	Using wrong antenna port number

	0x22
	Reader currently in testing mode

	0x23
	Get data in Reader internal storage device is failure

	0x24
	The Reader is Currently operating the tag

	0x25
	Run-time error, such as illegal operation in program run

	0x26
	Operation rights is blocked（Someone else has connected and used the Reader ）

	0x27
	Retain

	0x28
	Retain

	0x29
	Retain

	0x2A
	Retain

	0x2B
	Retain

	0x2C
	Retain

	0x2D
	Retain

	0x2E
	Retain

	0x2F
	Unknown Reader operation error

Table A-3 Data transmission error code list

	Error code
	Error code definition

	0x60
	Imperfect frames in Received instruction or data

	0x61
	CRC error in Received instruction or data

	0x62
	The current Reader cannot support this type the instruction

	0x63
	The current Reader cannot support the tag protocol

	0x64
	Parameter error in instruction

	0x65
	Instruction frames error（lack of domain or structure error in domain)

	0x66
	Cannot support this kind of instruction

	0x67
	Read receive too much instruction, and cannot handle temporarily

	0x68
	Retain

	0x69
	Retain

	0x6A
	Retain

	0x6B
	Retain

	0x6C
	Retain

	0x6D
	Retain

	0x6E
	Retain

	0x6F
	Unknown data transmission error

Table A-4 ISO18000-6B Tag operation error code list

	Error code
	Error code definition

	0xA0
	No response or no tag within RF range

	0xA1
	Tag doesn't support the command

	0xA2
	The command is not identified by tag, or address error

	0xA3
	This option is not supported

	0xA4
	Unknown error returned by tag

	0xA5
	Tag can not access a particular bank

	0xA6
	Specified bytes of tag is locked, and can not be re-locked

	0xA7
	Specified bytes of tag is locked, and can not be re-written

	0xA8
	Tag executing bytes of data writing failed

	0xA9
	Tag executing bytes locking failed

	0xAA
	Tag operation is cut down by host computer(such as carrier)

	0xAB
	Tag operation is not fulfilled due to interfering or others reasons

	0xAC
	Tag returns CRC error

	0xAD
	Retain

	0xAE
	Retain

	0xAF
	Unknown ISO18000-6B type tag operation error

Table A-5 ISO18000-6C Tag operation error code list

	Error code
	Error code definition

	0xB0
	No response or no tag within RF range

	0xB1
	The target storage bank of tag doesn't exist

	0xB2
	Tag return information: address of tag operation overflowing

	0xB3
	Tag return information: operation storage bank is locked

	0xB4
	Tag access password error

	0xB5
	Tag deactivate password error

	0XB6
	Tag operation is cut down by host computer(such as carrier)

	0xB7
	The tag, which is for reading/writing/locking data bank, has not been initialized.

	0xB8
	Uninitialized tag is found

	0xB9
	Tag return information: unknown error

	0xBA
	Tag return information: underpowered

	0xBB
	Retain

	0xBC
	Retain

	0xBD
	Retain

	0xBE
	Retain

	0xBF
	Unknown ISO18000-6C type tag operation error

30

_1234567890.vsd
�

0 7 8 223

UID

general data bank

_1234567891.vsd
USER Bank

TID Bank

EPC Bank

RESERVED Bank

Access Password

Kill Password

8byte

28byte

12byte*

4byte

4byte

